Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(31): e202304033, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263979

RESUMO

The development of novel polymerization capable of yielding polymers with low molecular weight distribution (D) is essential and significant in polymer chemistry, where monofunctional initiator contains only one initiation site in these polymerizations generally. Here, ketyl radical anion species is introduced to develop a novel Ketyl Mediated Polymerization (KMP), which enables radical polymerization at carbon radical site and anionic ring-opening polymerization at oxygen anion site, respectively. Meanwhile, polymerization and corresponding organic synthesis generally couldn't be performed simultaneously in one pot. Through KMP, organic synthesis and polymerization are achieved in one pot, where small molecules (cyclopentane derivates) and polymers with low D are successfully prepared under mild condition simultaneously. At the initiation step, both organic synthesis and polymerization are initiated by single electron transfer reaction with ketyl radical anion formation. Cyclopentane derivates are synthesized through 3-3 coupling reaction and cyclization. Polystyrene and polycaprolactone with low D and a full monomer conversion are prepared by KMP via radical polymerization and anionic ring-opening polymerization, respectively. This work therefore enables both organic synthesis and two different polymerizations from same initiation system, which saves time, labour, resource and energy and expands the reaction mode and method libraries of organic chemistry and polymer chemistry.

2.
ACS Macro Lett ; 11(3): 354-361, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35575370

RESUMO

The developments of the living alkene polymerization method have achieved great progress and enabled the precise synthesis of important polyalkenes with controlled molecular weight, molecular weight distribution, and architecture through an anionic, cationic or radical strategy. However, it is still challenging to develop a living alkene polymerization method through an all-in-one strategy where anionic and radical characteristics are merged into one polymerization species. Here, a versatile living polymerization method is reported by introducing a well-established all-in-one covalent-anionic-radical Barbier strategy into a living polymerization. Through this living covalent-anionic-radical Barbier polymerization (Barbier CARP), narrow distributed polystyrenes, with D as low as 1.05, are successfully prepared under mild conditions with a full monomer conversion by using wide varieties of organohalides, for example, alkyl, benzyl, allyl, and phenyl halides, as initiators with Mg in one pot. This living covalent-anionic-radical polymerization via a Barbier strategy expands the methodology library of polymer chemistry and enables living polymerization with an unconventional polymerization mode.


Assuntos
Alcenos , Poliestirenos , Ânions/química , Peso Molecular , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...